P\
/A \
y &
A

! B

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

9

// \\\
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTiONs ¢ 0= ROVAL A

or—— SOCIETY

The Cauchy Problem for Elastic Waves in an Anisotropic
Medium

G. F. D. Duff

Phil. Trans. R. Soc. Lond. A 1960 252, 249-273
doi: 10.1098/rsta.1960.0006

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1960 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;252/1010/249&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/252/1010/249.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 249 ]

THE CAUCHY PROBLEM FOR ELASTIC WAVES
IN AN ANISOTROPIC MEDIUM

By G. F. D. DUFF
Unwersity of Toronto
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The propagation of elastic waves in a homogeneous solid is governed by a hyperbolic system of
three linear second-order partial differential equations with constant coefficients. When the solid
is also isotropic, the form of these equations is well known and provides the foundation of the
conventional theory of elasticity (Love 1944).

The explicit solution of the initial value, or Cauchy, problem for the isotropic case was found
by Poisson, and in a different way by Stokes (1883). If the initial disturbance is sharp and con-
centrated, the resulting disturbance at a field point will consist of an initial sharp pressure
wave, a continuous wave for a certain period, and a final sharp shear wave. The disturbance then
ceases.

Here we shall consider a medium which is homogeneous but not isotropic, and will describe,
using Fourier transforms, the elastic waves produced by a local initial disturbance. The solution
again consists of a continuous wave which lasts for a definite period of time, and a number of
sharp waves, but the detailed nature of the waves may, in highly anisotropic media, be very
different and much more complicated. The continuous wave may arrive at a field point in advance
of the first sharp wave, though it will always terminate with the last sharp wave. The number of the
sharp waves may not exceed 75. The solution appears as the sum of three modes, which correspond
to the three sheets of a certain wave surface. The geometry of this surface, which may be quite
complicated (Musgrave 1954a), qualitatively determines the nature of the solution.

These calculations may serve as a foundation for the study of time-dependent elastic waves.
There is also mathematical interest in this example of a hyperbolic system for which the wave
surface may have certain types of singularities not usually considered in the existing general
theory of hyperbolic differential equations.
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1. THE BASIC EQUATIONS

An anisotropic solid medium is described by 21 elastic constants which form a Cartesian
tensor of the fourth order (Wooster 1938, p. 234). We shall here denote by ¢, the usual
elastic constants divided by density p, and we note the symmetry conditions
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Cpqrs = Crspg = Coprs (p,q,1,8 =1,2,38). (1-1)
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250 G. F. D. DUFF ON THE CAUCHY PROBLEM FOR

In the absence of body force the equations of motion are (Love 1944)

2 2
%‘2_1; = 5;5% (Cpqrs ur)) (1'2)
where the dependent variables u, (p = 1,2,3) are Cartesian components of the elastic
displacement vector, the x, are Cartesian co-ordinates in space, and ¢ is time. Summation
over ¢, r and s in (1-2) is understood according to the rules of Cartesian tensor calculus.
Itis assumed that the constants ¢,,,, have numerical values such that the strain energy W,

given by 2W = PChyrs€pgCrs (1-3)
is positive definite, for symmetric stress components ¢,, = ¢,
We seck solutions of (1-2) for the initial conditions of Cauchy’s problem:
uy, = f,(X), du,/it=g,(x) for t=0. (1-4)

However, we shall restrict our study to the case where only the initial velocities g,(x) are
different from zero. Indeed, if the solution of (1-2) with u, = 0, du,/0t = g,(x) for £ = 0 is
denoted by u,[¢(x),?], then the solution of (1-2) (supposing body force per unit density
terms £,(X, ¢) inserted on the right), and with initial conditions (1-4), is given by

(%, ) = S L), 8+, [8(x), A+ [ 4[4, 7), 7] dr. (15)

This formula is an instance of Stokes’s and Duhamel’s rules (Stokes 1883, p. 263; Courant
& Hilbert 1937, p. 165).
The Fourier transform notation to be used is

Ff(x) ~ 2—71,—% f S(y) exrdy (1-6)

with F-1f(x)

) e"ix-vdy.

Here FF~!'=F"1F =1, and the integrations are taken over the entire y-space with
dy = dy,dy,dy,. The scalar product has been written x.y.
Applying the transform, we shall take as initial conditions
d
Fu, =0, 0tF = Fg,(x) (¢t=0). (1-7)
At a later stage we shall use Dirichlet’s theorem for Fourier series (Courant & Hilbert
1931, p. 66) in the form
R§ 0 (0<a<b)
I sin { .

for continuous functions f(§ )

2. THE SLOWNESS AND WAVE SURFACES
A surface S': ¢(x,7) = 0 in space-time is said to be characteristic with respect to the

det[(at) Opp — Cpars 3t gt | = O (2:1)
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ELASTIC WAVES IN AN ANISOTROPIC MEDIUM 251

The characteristic or wave cone W with vertex at the origin of space-time is the envelope
of the characteristic planes which pass through the origin. As we shall see in § 3, the import-
ance of the wave cone for the elastic waves is that its convex envelope limits the region of
influence of a disturbance originating at the origin.

This wave cone has in general three sheets, and is constructed as follows.

First we form the slowness, or ‘normal’ cone § with vertex at the origin and equation

S(t’ !/) = det [tzb\pr_cpqrsyqys] = O (22)
For given y, there are, in general, three values of #2 for which this relation is satisfied. We
shall denote them by 2= v]zv(y) (N _ 1, 2, 3),

where the ‘velocity’ functions vy(y) thus defined are labelled so that

vi(y) = vi(y) = v3(y)- (2-3)
The vy(y) are positively homogeneous of the first degree in y: thus vy(ky) = |k|vy(y).
Clearly the vy(y) are the characteristic roots of the matrix

Kpr(y) = cpqrsyqys’
We will show that this matrix is positive definite,and hence that its three characteristic roots
v2(y) are all positive. This follows from our assumption (1-3) that the strain energy is posi-
tive definite. Setting ¢,, = x,¥,+¥,%, in (1-3), and rearranging with the help of (1-1), we

find
Cpqrs xp xryqys > 0

unless all x, or all y, are zero, and this proves that K, (y) is positive definite as required.
We now make precise the notion of a sheet. A sheet of § is the locus defined by

= vi(y),
where N is one of the values 1, 2, 3. Thus S consists of three sheets, S}, S,, 5. If two of the
vy(y) coincide, then the corresponding sheets meet. Because of our convention that

vi(y) = v3(y) = v3(y),
however, the sheets of S do not pass through each other.

We may distinguish two types of slowness cone as follows. If the equality signs in (2-3)
never hold, that is, if the sheets of ' meet only at the origin, then we shall call § regular.
Leray (1953) uses the term ‘regularly hyperbolic’ to describe an equation with slowness
cone having this property. On the other hand, if the sheets of § meet along one or more
generators of the slowness cone, we shall call § singular. This singular case requires a special
discussion which is given in § 6 below.

The reason for the term ‘slowness cone’ may be stated briefly. If a plane wave solution

up - [Jf(yrxr—‘t)
satisfies (1-2), then y, must satisfy

det [8pr—cpqrsyqys] =0,
which, if we write y, = 7, |y| with || = 1, takes the form

1
det I:W Opr—CpgrsTy ﬂs] = 0.

31-2
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252 G. F. D. DUFF ON THE CAUCHY PROBLEM FOR
Since the wave velocity is v = 1/|y| we find
det [vzspr_cpqrs Nq ”s] = 0. - (2'4’)

A comparison with (2-2) shows that the radius vector |y| of (2:2) for ¢ = 1 is the slowness
1/v(y) for that particular direction. Fuller detail regarding plane wave solutions may be
found in Synge (1956, 1957).

The section of the slowness cone S = S(¢,y) by the hyperplane ¢ = 1 gives the slowness
surface § = $(1,y). This two-dimensional surface in the 3-space of the variables y,is algebraic
of the sixth degree, and bounded. In the regular case it consists of three concentric and non-
intersecting sheets, each of which is a simple closed surface. In the singular case the three
surfaces have common points, which are said to be multiple points of the slowness surface

S(L,).

Ficure 1. Sketch of a central plane section of a slowness surface. No multiple points are
present, so the system of differential equations is regularly hyperbolic.

To construct the wave cone, we note that the normal to the sheet Sy (N = 1,2, 3) of the
slowness cone has direction numbers (dvy/dy,, —1). We reflect these normals in the plane
t =0, and get (dvy/dy,, +1). As y ranges over Sy, with 7 fixed, these reflected normals
generate in space-time a surface which is the sheet W}; of the wave cone W. The equation
of this sheet is to be found by eliminating from the equations

& aUN(y) (2,5)

t o dy,

the ratios of the three variables y,. Since v,(y) is positively homogeneous of degree one, its
first derivatives have degree zero and only the two ratios of the y, enter. For ¢ = const.
the cross-section of the wave cone is a three-sheeted closed surface in physical space—the
wave surface W(¢). When the vertex of the wave cone is translated to the point x, the wave
surface will be denoted by W(x, ¢) and its sheets by Wy(x, ¢) (figure 2).

As the qualitative properties of the elastic waves are largely determined by the con-
figuration of the wave surface, we first study it from a geometrical viewpoint. It is sufficient
to consider ¢ = 1. From (2-3) it follows that I/(0, 1) is the polar reciprocal with respect to
the unit sphere of the slowness surface §' (Salmon 1882, p. 580). The radius vector y of a
point of S has the direction of the normal to W at the corresponding point of W, and vice
versa.
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ELASTIC WAVES IN AN ANISOTROPIC MEDIUM 253

Setting ¢ = 1 we find for the general equation of S:

S(y) = det [3pr_6pqrsyqys] =0,
which is of the sixth degree, and, as we have seen, § consists of three real sheets. In the
isotropic case these are concentric spheres, and the two outermost coincide. In general
each separate sheet Sy of §'is a piecewise analytic simple closed surface, having no multiple
points, since, if a multiple point existed, the line joining it to the origin would meet the three
sheets in more than six points, which is impossible. However, two, or even all three, sheets
may meet, so that the slowness surface as a whole may have double or triple points.

Frcure 2. Sketch of the central section of the wave surface dual to figure 1. The point singularities
of the wave surface are dual to the tangential singularities of the slowness surface. The class
number shown in the figure is 18; the class of the entire wave surface may be greater.

However, if the innermost sheet S| of ' does not meet the other two, then this sheet is
convex. Indeed any straight line can meet S| in at most two points, since it must meet .S,
and S; in at least two points each.

The three-sheeted wave surface I is also an algebraic surface, of degree equal to the class
of S, that is, equal to the greatest number of tangent planes to S which pass through a given
straight line. The class number of a surface S of degree » = 6 may not exceed n(n—1)2 = 150
(Salmon 1882, p. 248), and will be less if S has pointsingularities of certain kinds. A complete
analysis of these singularities and so of their effect upon the class number of S is far too com-
plicated to be undertaken here. We shall later discuss the class number for two particular
anisotropic types of crystal—the cubic and hexagonal. As W is symmetric with respect to
the origin, any half line from the origin will meet /" at most 75 times. A set of parametric
equations for W has been found by Musgrave (1954 4), while extensive numerical studies
of hexagonal and cubic media are given by Musgrave (19544) and Miller & Musgrave
(1956).

The singularities of I are the duals of those of S. To a double point of S corresponds a
double tangent of W, and vice versa. Since S has no cusps or cuspidal edges, W can have no
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254 G. F. D. DUFF ON THE CAUCHY PROBLEM FOR

lines of inflexion. However, S may have lines of inflexion, and so I will then possess cuspidal
edges.

We shall need to study the leading wave front of a wave originating from a point source.
Since polar reciprocation reverses the inclusion relation for surfaces symmetric about the
origin, the leading wave front is in general the reciprocal of the innermost sheet .S, of the
slowness surface.

Any straight line which meets S; must also meet each of the other two sheets of S in two
points, for a total of four. Since S has degree six, it follows that no straight line can meet
$) in more than two points. This implies that S| is a strictly convex surface, for the straight
line joining any two points of S| has one and only one segment lying within S,.

Ficure 3. Co-ordinate-plane sections of the slowness and wave surfaces, respectively, in the cubic
case with 4 > 0. The number of sharp waves will be 5, except in directions sufficiently close to
the co-ordinate axes, where it is 3.

Ficure 4. Co-ordinate-plane sections of the slowness and wave surfaces, respectively, in the cubic
case with 4 = 0. The four double points on the inner sheets of S correspond to the four dashed
lines which form the convex completion of . Comparison with figure 3 shows that these lines,
which are generators of a ruled surface portion of W, arise from coalescence of certain parts of
the cusps and of the convex outer sheet.

When the innermost sheet §; does not meet the other two sheets of S, it has a continuously
turning tangent plane. Then the dual surface W is also strictly convex, and forms the outer-
most of the three sheets of the wave surface W.

However, if S| meets the other sheets of S in certain multiple curves or points, which corre-
spond to equal values for two or more of the roots vy(y), the construction of I is more com-
plicated. At such multiple points the inner surface S}, which has the equation 7,(y) = 1
(with 7, (y) the largest of the three roots v,(y)), may not have a continuously turning tangent
plane. Such a discontinuity of the normal to S, corresponds to a discontinuity of position,
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ELASTIC WAVES IN AN ANISOTROPIC MEDIUM 255

but not of the normal, in . As the tangent plane to S, turns about the given double point,
the dual point of W moves along a given double straight line. To double curves on S, there
will correspond portions of ruled surfaces of W, while conical points of §; go over into planar
regions of W, as for example in the cubic case b = 0 (figures 3, 4), which is discussed in
§7(b). In fact W is the boundary of the smallest convex region containing all three sheets of
W, and so is called the convex envelope of .

3. SHARP AND CONTINUOUS WAVES, DEPENDENCE DOMAINS, AND LACUNAE

The solution of our initial value problem will be expressed as the sum of a surface integral
(5-26) and a volume integral (5-38). The surface integral, which we shall call the sharp wave,
is taken over the wave surface W(x, ¢) with centre «, the field point. The volume integral,
to be known as the continuous wave, is taken over the interior of the convex envelope
W(x, 1), excluding the innermost region R,(x), which will be defined later.

The qualitative nature of the solution will now be examined from two complementary
points of view. Let us first consider a source, or initial disturbance, concentrated in a neigh-
bourhood of x having diameter d. If we draw in space-time the direct, or forward, wave
cone W with vertex at (X, 0), and hence with cross-section W (X, ¢) at time ¢, then the sharp
wave generated by our disturbance will occupy a neighbourhood of thickness ¢ of the wave
cone. Thus the spatial region of influence of the sharp wave is a number of shells, of thickness
d, enclosing the three sheets of W(x,?). The volume of these shells is approximately pro-
portional to #2. In contrast, the continuous wave emanating from this source occupies a
region which is a neighbourhood of the interior of the convex closure W(x,{), and has
volume nearly proportional to #3.

The complementary point of view is that of the observer at a field point X at time ¢, and
of the domain of dependence of the solution «,(X,#) upon the initial data. Again, let the
initial disturbance be concentrated in a region R of diameter J, which contains the origin.
Since the differential equations are linear there is no loss of generality in this assumption.
As the time ¢ increases the observer’s wave surface W(X, ¢) with centre x will expand. Since
the sharp wave is a surface integral over W(X, ¢), the first sharp wave will arrive at X at the
instant the outer sheet (X, f) encounters the region R. After a time interval dv(x), where
v(x) is the phase velocity associated with that particular sheet, W(X, ¢) will pass over R, and
the first sharp wave will terminate. Subsequent sharp waves will reach x as the remaining
sheets of W(x, t) arrive at the region R, and each one will endure for a time of order §. Thus
for small ¢ the various sharp waves travelling in a given direction may overlap, but after a
sufficiently long time they become separated.

The continuous wave reaches the field point x at the instant the convex envelope W(x, {)
touches R. This may be before the first sharp wave, unless W(x, ¢) is itself convex. Then the
continuous wave will endure until the last sharp wave has passed, an interval of time pro-
portional to the distance to the origin. The disturbance at x thereafter ceases.

Thus the terms ‘sharp’ and ‘continuous’ describe, in contrasting fashion, the profiles of
the two types of wave originating from a concentrated initial disturbance (figure 5).

The domain of dependence may be visualized in space-time by drawing the backward or
retrograde wave cone with vertex at the observer’s point (X, ), and noting the intersection
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256 G. F. D. DUFF ON THE CAUCHY PROBLEM FOR

of the sheets of that cone with the initial hyperplane ¢ = 0. This intersection is exactly
congruent to W(X, ). The domain of dependence of the sharp wave consists of the inter-
section W (X, ¢) of the sheets themselves, a locus of dimension 2. The domain of dependence
for the continuous wave is the 3-dimensional region which is interior to the convex envelope
W(x,t) of the wave surface, except, as noted before, for the central part of that wave
surface.

That the domain of dependence is bounded by the convex envelope W (X, t) follows from
the general theory of hyperbolic differential equations, at least in the regularly hyperbolic
case when the slowness surface has no multiple points (Leray 1953, pp. 128, 168). For
completeness we shall give a direct proof that u,(x, #) depends only on the initial data in

and on the convex envelope W(x, ¢). This will follow if it can be shown that the vanishing

0
Ficure 5. Section in space (horizontally) and time (vertically) of an impulse, originating at O,
which meets the ‘world line’ of a point P fixed in space. The sharp waves are carried on the
sheets of the wave cone, while the continuous wave occupies the region enclosed between the
inner and outer wave sheets.

of the data in W(x, t) ensures that u,(X, £) shall be zero. To show this let the convex retro-
grade wave cone with vertex (X, f) in space-time be drawn, meeting the initial surface = 0
in W(x,?). Then this wave cone meets the plane ¢ = % in the convex surface W(x, t—h).
The normal to the wave cone has direction numbers (y,,1) which according to the
reciprocal polar relation are co-ordinates of a point on the slowness cone S. Since we
consider the convex envelope of the wave cone, the y, define a point of the innermost
sheet S;.

Let us denote time derivatives by a dot, and derivatives with respect to " by a subscript
r following the index of the component: thus #,, u, .. We consider the total of kinetic and
strain energy in the spatial region W(x, t—#) at time /, and show that this energy cannot
increase.

Thus let B(R) = 5 [ Gty Gyt g2,,) AV (3-1)

denote the positive definite energy integral (see (1-3)), taken over the interior of W(x, t—#).
If, as & increases, o denotes the inward normal velocity of the boundary of this region, then

dE(h s .
—dgz ) _ f(upup+cpq,sup,qu,’s) dv

1 ..
_2fo(upup+cpqmup,qur,s) dx.
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From the equations of motion (1-2), the first integral will become
J (dp Cparsthr,sq _I"cpqrsdp, qlr, s) dv

- f (dpcpqrsur,s) ,q d V

= fcp(mupu, sn,d2,
where n, is the unit outward normal to the surface W, and dX the element of surface area.
dF
Thus = f 14z, (3-2)
where I = 0ty 1y +Cpppetly, g Uy ) — 2pgrshyp Myl - (3-3)

Completing the square and making use of the positivity of strain energy, we find

T . . .
ol = o2y, +cppps (U, —1hyny) (OU, U, 0) —Cppply Ty Uy
9. .
= 0Lyl — Cpppsthy Ty U, . (3-4)

qriTs*t

We now show that this last quantity is non-negative, where o is the inward normal velocity
of the surface W(x,t—#) as h increases. This velocity is given by the slope of the normal
(y,, 1) relative to the hyperplane 4 = 0, and so is

tanf = 1/|y| = o(y)

since (4,, 1) lies on the inner slowness surface S;. Now since 72(y) is the largest characteristic
root of K,,(y), we have
0 = 0(y) = max (Ky,(y) nyny) = X (Gyqrs4 g4y 1), (3:3)
and it follows that the second term of the right side never exceeds the first one. Hence I > 0,
and so dE/dk < 0. If at time zero we have u, = 0, 1, = 0, then E(0) = 0 and consequently
E(h) = 0for 0 < h < . Thus 4, vanishes inside the retrograde convex wave cone with vertex
at (X, 1), and by continuity «, is therefore zero at (x, ). This completes the proof that the
value of u,(X, t) depends only on the initial data within the convex envelope W(x, ?).
The quantity pE(¢) represents the total energy of the elastic vibrations, and we include
a short proof, based on formula (3-2), of the conservation of energy. Suppose that at time
zero the field is at rest except in a certain bounded domain D, where the initial displace-
ment and velocity vectors are given smooth vector fields vanishing near the boundary of D,,.
Then, at a later time ¢ the disturbance is confined to a larger domain D, which is bounded
by the envelope of W(x, ), when x traverses the boundary of D,. Let us fix a time interval
{5, and choose D, as the domain of integration for the integral E(¢), 0 < ¢ <. As the u,
vanish on the boundary of D,, we have /=0 in (3:3) and so (3-2) yields dE(#)/dt = 0.

Hence E(t) = E(0), (3-6)

an equation which is clearly true for all later time. This shows that the total of kinetic and
strain energy of the field remains constant.

The sheets of the wave cone W(x, ) divide the interior of the convex envelope W(x, t)
into certain regions, the number of which will depend upon the relationship of the three
sheets and the number of cuspidal edges. Let the region containing the point X be denoted

32 Vor. 252. A.
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258 G. F. D. DUFF ON THE CAUCHY PROBLEM FOR

by R,(X, ). Rather than label each of the other regions individually, we find it convenient
to denote by Ry(xX,?) (N =1,2,3) the entire region interior to W(x,#) and exterior to
Wy(x,£). Regions adjacent to cuspidal edges shall be counted as exterior to the sheet in
question.

It is possible that the continuous wave may be absent from one or more of these regions,
which are then known as lacunae. Petrowsky (1945) has given a deep topological criterion
as a necessary and sufficient condition for a given region to be a lacuna. We will show by
a direct evaluation of the solution that the innermost region R, is a lacuna, and hence, as
described earlier, the continuous wave terminates with the last sharp wave. Thus there is
no ‘residual’ or ‘diffused’ continuous wave. The total domain of dependence for u,(X, ?)
is then the interior and boundary of W(x, ), less R,(x, t) (figure 2).

A well-known example of a lacuna is connected with the strong form of Huyghens’s
premise (Courant & Hilbert 1937, p. 895). The propagation of light is clean-cut, without
residual waves, and so the interior of the light-cone in space-time is a lacuna. The existence
of lacunae depends in large measure on the parity of the number of space dimensions.

4. EXPLICIT CALCULATION OF THE GENERAL SOLUTION

Applying the Fourier transform to (1-2), integrating by parts and rejecting integrals
over the infinite sphere, we find

0%Fu,(x,1) _

T —K,,(x) Fu,(x,1), (4-1)
where again K, (X) = K,,(X) = €ppps Xy % (4-2)
This is satisfied by Fu,(x,2) = 4,(x) sin [o(x) £], (4-3)
provided that »(x) satisfies the determinantal condition

det [v%,,— K, (X)] = 0, (4-4)

while the eigenvector 4,(x) satisfies
(128, K,y (X)) 4,(%) =0 (p=1,2,3). +:5)
The positive definite character of K, (x) assures the existence of the three roots vN(x)
described in §2, with U%(x) > Uo(x) > 7)3(%’). ( )
We assume henceforth that v (X) (N = 1,2, 3) is positive, and it is easy to show that vy(x)
is positively homogeneous of degree one in X: v5(AX) = |A| vy(X) for any scalar A. If A)(x)
is an eigenvector corresponding to the eigenvalue v%(x), then any such eigenvector has the

form C¥(x) A} (x), where N is not summed. Thus by superposing three expressions such as
(4-3) we find the general solution

Fu,(x, 1) = é () AY(x) sin [oy(x) 1) (4-7)

Here the summation over N is explicit, as N is not a tensorial index. Now (4:7) satisfies
(4-2) and will satisfy the initial conditions if

3O A3(x) 1y(x) — Fe,(x). (48)
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To determine the CV(x) from these conditions, we note that the vectors 4)(X) are in-
dependent and so an inverse matrix F4(x) can be defined with the property that

Ef(x) A)(x) = o3 (4-9)
Then (4-8) yields CV(x) = E%%)_é%”_(_g,
and (4-7) may be written !
Fu,(x,t) = E LNq(X) Fg,(x)sin [vy(X) £], (4-10)
where Ly,(x) = {lé}’%x)(%iv(x_)_, (4-11)

and N is not summed.

When two or more of the vy(X) coincide in value, there is a lack of uniqueness in the choice
of the eigenvectors 4)(x), but it is easy to verify that (4-10) is independent of the actual
choice made.

Finally, therefore, the solution is

(%, = 3 FHLY(x) Fe,(x) sin [oy(x) ]}, (412)

and in the following section we study the reduction of this sixfold integral.

Explicit calculation of the LY () is best attained by starting from Kelvin’s concise form
of the fundamental cubic equation for 2. This is presented by Musgrave (1954a); we
modify the notation slightly in order to use indices. Since K, (x) is a symmetric 3 X 3 matrix,

it 1 ible t it
1T 18 possible to write Kpr = &y, (p 4 T) (4.13)
and to solve for the three quantities a,:
o2 — Ky, Ky
b K 2

rs
where p, 7, s are distinct. Thus «, is homogeneous of degree +-1 in the x,. Setting

a, = K,,—a2,
we find that (4-5) can be written

(v®—a,) 4, = 0,2, 0,4, = a5,

rrTTr

say, where p is not summed on the left. Thus
S

A4, =
2
v*—a,

b

s (4-14)

and it is convenient to take § = 2, a,4, = 1. Thence follows Kelvin’s form of the cubic

equation, namely o2
r

"v2—a,

= 1. (4-15)

The eigenvector A)(X) can therefore be taken as

a,

AN(x) = (4-16)

Upv'“'(lp
32-2
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In calculating the inverse matrix, let us adopt the convention that p, p+1, p+2 shall denote

the three index values 1, 2, 3 in some order. Then, after some calculation and reduction,
we find

2 2 )
Eb (%) = a (v% yyy) (VF—ap2 , (4-17)
) = () ()
and so L (x) = %% (U lgn) (R —dgn) (418)

Un(vh—a,) (] —ks1) (0] —2s0)

It will be noted that in the regular case the three terms in (4-10), which correspond to
N =1,2,3, are well defined separately and independently, since the three roots v%(x) are
all distinct. In the next section (§ 5) we restrict ourselves to this regular case, and study the
reduction of the multiple integrals.

The singular case offers two difficulties: first, the singular points on the slowness surface
which make precautions necessary in defining the integrals; and, secondly, the behaviour
of the factors L} (x). In §6 it will be shown that a singular problem is, in a certain sense,
the limit of a regular one, and the calculations for the regular case will be taken over by a
limiting process.

5. REDUCTION OF THE INTEGRALS, REGULAR CASE
We now select one of the three terms in (4-12), and omit the index N for convenience.

Thus we consider u,(X, 1) = F-1{L, Fg,sin [o(x) ]}, (51)

where L, (x) is positively homogeneous of degree —1 in x. Then

(2m)* (3, 1) = [ [ee=2sin [o(y) €] L, (¥) g,(2) dy dz (52

and by noting the evenness in y of v(y) and L, (y), and replacing z—x by z, we find

(2m)3u,(x, 1) = f f cos [y .2] sin [o(y) £] L, (¥) g, (X +2) dydz. (53)

We now proceed to reduce this sextuple integral, a rather delicate matter. If we introduce
polar co-ordinates by writing
y=1yla (In]=1),

z=|z|t ([g|=1),
we have dy = |y|2d|y|do,,
dz = |z|*d|z| d,,

where do,, dw, are elementary solid angles. We then have integrations over |y| and |z|
from 0 toco, and over the two unit spheres. Care must be taken to avoid divergent integrals.
The plan is as follows:

(1) integrate with respect to |y| from 0 to R;

(2) integrate with respect to duw,;

(3) apply the limit R —co, conjointly with integration over |z|, and use Dirichlet’s
formula (1-6);

(4) integrate with respect to dw,.
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Let ¢ be positive, and suppose g,(x) vanishes outside a bounded domain D, the region of
initial disturbance. Write (5-3) in the form

2(2m)*u,(x, ) — lim f g,(x+2)dz f Li(2,t,7) do,, (54)
where Iy(z,t,7) =2 f coslyln-zlsin[|y|o(s) &1 y] d]yl. (55)
This last integral is elementary: if we set
) E=mn.z—v(nt; & =mn.z+v(y)s (56)
the integral becomes
REcos RE—sin RE  RE' cos RE' —sin RE'
Ii(z,t,7m) = e - £
sin Rg) d (sm RE' )
] . 57
)i (" ()

Noting that the second part of (5-7) is an odd function of §’, we can show that upon integra-
tion with respect to dw, the contribution from the second term duplicates that from the first.
A reversal of sign of # beneath the integral sign leads at once to this conclusion.
sin RE

z ) dw,.

The form of the inner integral is well adapted to the use of Dirichlet’s formula (1-6), pro-
vided that first we integrate by parts with respect to £. We therefore first study the behaviour
of £ on the unit #-sphere. It will be seen below that it is actually better to use arc length on
the unit g-sphere as variable, instead of §.

For given z, ¢ the quantity £ will attain one or more maximum and minimum values on
the unit -sphere. Let {@ denote such a local maximum, and {® the absolute minimum
value. Since ¢ > 0, and v(y) > 0, it follows that & < 0. Let y® and #® be the corresponding
points of the #-sphere, found from the conditions

Q)
8g = Zr&]r—ta’ifaﬂr = 077;*3777'3
r

v
so that z,—t o 09, (5-9)

r

Thus (2m2u,(x,1) = lim [g,(2+%) dz [ L, (1 dg(

R—> o

(5:8)

with 7,7, = 1. These four equations will determine 5, and ¢ as functions of z and ¢. We note
that 0=n,z,—tv(y) =§, (5:10)
at the stationary points 7 and #®.

We now join the two points 7@ and #® by arcs of circles on the sphere, each such arc
being specified by an azimuthal angle ¢. Let s be arc length, measured from 7, and let
the normal separation of the arcs be n(s, ¢) dg. Since dw, = n(s, §) dsd¢ we write

f (2) (sm Rg) do,
-, f 0 3 () gt
= [ ag[ Ll Smfg Sriso ]

2r - ("®sin RE d s
MJ d¢ L(DTH} Lyy(n d_g”(s’¢):|d5- (5

%73
i
ja—
~
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The integration by parts has now been performed, with respect to the variable s. At this
point the separation of the solution into sharp and continuous waves is effected, the in-
tegrated term leading to the sharp wave.

In order to rewrite the sharp wave portion in a more convenient form, we note that the
integrated terms arise from the two critical points 7 and 7®. As we approach 7, where
d¢/ds = 0 by the minimal property of &, we have n(s, §) ~ s, and

~(a3)
ds ds? ,7(1).
ds
Therefore a" n(s, @) = l/d > at g, (5-12)
Likewise, it is found that at 7®:
ds d%
! 1/ds2. (513)
Accordingly we have from (5-8), (5-11), (5-12) and (5-13),
(2m)*u,(x, 1) = lim f g,(2-+%) dz[KE, (2, £) + ME (2, 1)], (5-14)
where the kernel of the sharp wave is
sin RE@ (27 d2¢ sm RED 2" d2¢
a0 - g (5) 0 (45 o
and the kernel for the continuous wave is
27 7 sin RE d ds
Mtz = [ ag 1S G L) Gt ) ] o (510

(a) The sharp wave
We now consider the contribution from the first term of KF, (z,f) as R — 0. Because of
the oscillating factor sin [RE®], the limit of the contribution will be zero unless £2 vanishes
within the domain of integration. Since

0 = || .5 ~(y®),

this will happen when this expression has opposite signs for |z| = 7, and |z| = r,, the limits
of integration over D in the direction §. Since {0 < 0, the other term contributes nothing.
Let us consider the meaning of the condition £? = 0. We have

£ = ,7(72)_zr~_v(,7(2)) t =02 =0,

dv
- () 5-17
and so, by (5°9) Zr (877,) 7® ( )

Referring to (2-4) we see that this states just that the point z, shall lie upon the wave surface
W(t), which is the unit wave surface W expanded in the ratio of  to 1. However, (5-17) also
demands that n and & should be conjugate unit vectors with respect to the slowness and
wave surfaces, in the following sense. Let the ray defined by n cut the slowness surface at
a point 4. Then § has the direction of the normal at 4 to the slowness surface, and so is
uniquely determined. Since the relation between the slowness and wave surfaces is reci-
procal, the normal at a point of ¥, cut by the ray § from the origin, has the direction 7.
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However, as a sheet of W may be cut by such a ray in more than one point (if cusp-lines are
present), the conjugate »(¢) is multiple-valued in general. The appropriate value can be
determined by continuity, if necessary.

We now choose a point of observation x and a time ¢, and draw the observer’s wave surface
W(x,t) with centre X. Let § define a ray drawn from X; then the sole contribution from
Kf (x,t) comes from that |z| where the ray cuts W(X,t). In order to express the limit as
R — o0 as an integral over W (t), we note that the cosine of the angle between the ray from
the origin and the normal to W is n.§, where y is conjugate to § as above. Thus

dz = |z|2d|z| dw, = 7.{d|z| dS}, (5:18)

where dS), is the surface element of . By Dirichlet’s formula (1:6) we find from (5-14)
and (5-15) that the sharp wave contribution is

g f Wi 816 %) 7. £dSy (%(%l)gm 0 Lyq (1) U z" d¢/ (gg) 7,<2):|g<2> ~0 (5-19)

Here dS), is the surface element of W in the z variables, and n® = 5®(g) is the appropriate
value of the direction n conjugate to §. Also r is the radius vector from x to W(x,¢) in the
¢ direction.

To evaluate the integral in the square bracket in (5:19), we note that

G (a0 ona
ds2 — \"" "0y,) ds> “dp,dp, 0s ds”

Since the integral in (5-19) is to be evaluated when £{® = 0, the first term on the right of
(5-20) must vanish, by (5-17). Thus the integral is equal to —y(5®)/t, where

27 d¢

) = —_— .

¥ (1) [ [M i %} - (5:21)
0,0, ds ds |,eye

This integral may be evaluated by taking the maximum point as north pole of the -sphere
in spherical polar co-ordinates, and by use of the formula

and (5-20)

= df T 1
f0a+cost9~~/(a2~1) (¢>1).
The result is ¥(n®) = J{‘l%—“(jg)ﬂ} n®.%, (5-22)

where K () is the Gaussian curvature of the slowness surface (Eisenhart 1909, p. 123). We
note that K is positive if the slowness surface is strictly convex, in which case the positive
sign should be taken in (5-22). A parabolic line on the slowness surface will lead to a singu-
larity of ¥(n); we will later show that this singularity is integrable. For hyperbolic or
concave regions, if any, of the slowness surface, the negative sign shall be taken in (5-22).

We must also consider the ratio

(d|2]/dE®) g = o5
where {@ = |z|n®.§—v(y®@) ¢, and

|z| §, —t(dv/,) yor = E@?, (5-23)
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with 7,7, = 1. Elimination of the 7{? will yield |z| as a function of £®; to find the above
derivative we vary the independent quantities in (5-23):

2
{0z ~t(,—,f—;’,,— O, —1,06@ —E2dp, = 0. (5-24)

Now eliminate the differentials of the 7, by means of the second equation of variation
1,07, = 0. To do this, multiply (5-24) by 5, and contract over r. Since dv/dy, is homogeneous
of degree zero in the 7,, the term with the second derivatives in (5-24) will vanish, by Euler’s
theorem. The result becomes

dlz| 1
(@)g(m:o T ad.T (5-25)

Substituting these results in (5-19), and simplifying, we find the general formula for the
sharp wave portion of the solution contributed by the Nth sheet, namely,

N _ 1 N n.5dS, .
00 = g7 TR &) T (526)

Here n and ¢ are conjugate as before, dS), is the element of surface area of W(¢), in the
variables §,and the sign of ¢ = ¢,(7) is to be taken as the sign of the Gaussian curvature K(7).

By means of the geometric relations between the slowness and wave surfaces we can put
the above integral into more convenient forms. Since .% is the cosine of the inclination of
the normal of W(#) to the radius vector from the origin, we have

1.8dS,, = r32doy, (5-27)

where 7 = 7,tis the distance |z|. In order to relate dw, to the area element dS of the slowness
surface, let us use the original definition of Gauss for the curvature K(7): it is the reciprocal
of the ratio of dS to the area element on the ‘hodograph’ or spherical indicatrix related to
this surface: and this sphere is exactly the {-sphere. Thus (Eisenhart 19og, p. 145)

dw, = K(n) dS. (5-28)

Since W = W(1) and § are reciprocal surfaces, there are relations dual to (5:27) and
(5-28): they are n.5dS = |y|2do,, (5-29)
and 2do, = Ky() dS),. (5-30)

Here K,,({) is the Gaussian curvature of the wave surface I/(1): the curvature for W(¢)
is proportional to =2 which accounts for the factor on the left of (5-30).
Multiply together these four relations: we find

(7.0)% = 7§ [y[2 K () Ky (C)- (5:31)
This also shows that the two dual Gauss curvatures have the same sign ; and therefore (5-31)

is true, when the curvatures are replaced by their absolute values. As in (2-3) we have
|y|v(7) = 1, and if we take square roots in (5-31) we have for the sharp wave the expressions

1

) = g | L) g, 0%+%0 L e KO s,

¢ N ro(8) )
- f oy L 0) &1 +X)UN(77> e J{|Kp(O)1dS,. (532)
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The sharp wave term may be transformed into an integral over the slowness surface,
a form which, though less suited to physical interpretation would, however, be easier to
evaluate numerically. By (5-27) and (5-28) we find

00,0) = g [ ) a8 4) e J{K(n) 3 dS. (5:33)

Here the radius vector z = 7,#{ in the argument of g, can be expressed as a function of 4
by the parametric formulas given by Musgrave (19544, p. 349).

The curvature K() vanishes on the inflexion lines of §, which correspond to the cusps
of W. Formula (5-33) shows that the contribution to the integral near these singularities

is bounded.
(b) The continuous wave

We have now to consider the contribution from MF (z,¢) in (5-14). Unless £ vanishes in

the range of integration, we have
lim Mg (z,t) = 0,
R —>
as follows easily from (1-6); and thus zero contribution. We can therefore speak of z, ¢
contributing to the continuous wave if
§® = max (z.n—v(7y) t)
Il =1

is positive; and we seek the contributing region as follows. Let z = |z|¢, and note that for
£@ = 0 the point z lies on the wave cone W(¢), by (5:17). Since v(7) ¢t > 0, we must have
z.n = |Z|§.n > 0 and it follows that if z lies outside the wave cone W(¢) there are positive
values of £ for n = n®({). On the other hand, if z lies within W(#) the maximum of £ is
clearly negative. We conclude that the domain of contributing z is the region exterior to
the wave cone W(¢); that is, exterior to the particular sheet W, (f) now under consideration.

From (5-16) we see that if z contributes, then by (1:6)

My(2,1) = lim M, (2,0) = f d¢[§2§1( o) S s ¢))](§=O). (5:34)

Let us define £ = f e
- f i ) Fdpde. (5-35)

Then ng%@= L), ¢>§g af
and dZ2 '~ fas g (Lt >d2)] ‘ (5:36)
Hence M, (z,0)=m [dzi%g@]g:o. | (5-37)

This expression is the kernel of the integral for the continuous wave. Indeed from (5-14) we
see that the contribution to the continuous wave from the particular value N considered is

wy (X, ) fgq (z+x)dz [dng LY. (n) dw”]z=o' (5-38)

33 VoL. 252. A.


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

266 G. F. D. DUFF ON THE CAUCHY PROBLEM FOR

Here the integration over z is taken over the contributing region, namely that part of the
domain D exterior to any part of the sheet W, (¢) of the wave surface W(¢). The function
M,,(z,t) vanishes, however, in the region interior to the wave surface, since then all values
of n.z—u(y) ¢t are negative and the integration is carried out over the entire #-sphere. Thus
F,,(£) is a constant for all non-negative £ and so M, (z, ) vanishes.

This establishes the fact, mentioned in §3, that the innermost region R, of the three-
sheeted wave cone is a lacuna. Indeed there is no contribution for any value N =1,2,3
from this region.

The domain of integration in (5-38) can be bounded on the outside if we recall that the
entire domain of dependence, that is, the entire domain of integration for the integrals
appearing in the solution, is contained in the convex closure W(x, ¢) of the observer’s wave
cone. Since the argument of the datum functions g,(X) contains the translation vector x,
we may take the domain of integration in (5-38) as limited outside by W(¢). Thus the
regions R(t) defined in § 3 as exterior to W(£) and interior to W(¢) shall be chosen as the
proper domains of integration for the integrals (5-38). We note that if I () is convex then
R,(¢) is empty and in that case only two of the continuous wave terms (5-38) will appear.
This cancellation of integrals over the infinite domain was noted by Stokes in his solution
for the isotropic case, which is examined in § 7 (a) below. It is an expression of the fact that
wave propagation with arbitrarily large velocity cannot take place.

The full expression for the solution is

u,(X, t) = 2117%\;21 fww) Ly, (1) g,(ro8 +X) :’(z)v((i)) ex(n) JIKH() |} ASY,
1 3 dz v
+WN§1 fRW) 8,(2+x%) dZ[Egr2 L{N< ng)q(ﬂ) dw/”]g . (5-39)

Here W,(¢) is the Nth sheet of the wave surface W(¢), the cross-section at time ¢ of the wave
cone, and R,(#) is the region enclosed between Wy (#) and the convex envelope W(t) of the
3-sheeted wave surface W(¢). Here also &, denotes the combination n.z—uvy(7)?.

From this expression we see that an initial disturbance concentrated near the origin of
physical space causes a continuous (or volume) wave and a sharp (or shell-like) wave to
spread between and along the sheets of the direct wave cone W with vertex at the origin.
At a field point x the continuous wave will in general begin first, although if ¥ (¢) is convex
the first sharp wave will arrive simultaneously with the continuous wave. The continuous
wave is punctuated by subsequent sharp waves and terminates at the instant of the last
sharp wave, which is attached to the innermost sheet of the wave surface. As stated earlier
the number of sharp waves is half the degree of W (¢); that is, half the class number of the
slowness surface, and therefore cannot exceed the maximum of 75. In special cases this
number can be greatly reduced.

6. MULTIPLE POINTS ON &

That certain types of multiple points do necessarily appear on S, in crystal classes of
physical importance, has been made evident by the work of Musgrave. We need to show
that the solution formulae of § 5 have a meaning in such cases. The known examples of
physical interest involve only double points, and we shall give a complete description of
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the solution for these. Our analysis does not cover all possible types of triple points, as there
is one circumstance (Case VI below) wherein the factors L}, have a singularity.
The components u, all satisfy the single sixth order equation Lu, = 0, where

32
L= (aza) dt[ﬁfaﬁ v | (6-1)

this equation has the same slowness and wave surfaces as the system. If now there are
multiple points on S, we shall perturb the sixth order operator L in such a way as to separate
the multiple roots, while ensuring that the perturbed operator L, is regularly hyperbolic.
With S(¢,y) defined as in (2-2), we shall write

k

S,(69) = 5aeS(ty) (k=1,2); (62

S.(¢,y) is of degree 83—k in #2, and of degree 6 —2£ in y. If now the slowness surface
S(1,y) = 0 has a triple point, the surface §,(1,y) = 0 has a double point coincident with it,
by Rolle’s theorem. Indeed, the sheets of the cone &S,(¢,y) = 0 separate the sheets of
S(t,y) = 0; and a similar relationship holds between £5, and ;. It follows that the two sheets
of the surface S,(1,y) = 0 in y-space separate the three sheets of S(1,y) = 0, and are in turn
separated by the one sheet of S,(1,y) = 0. Examination of the regions in which these
expressions are positive or negative shows that the surface (1, y) —¢,5,(1,y) = 0, for¢; > 0,
has a double point; the third sheet being detached from it. This surface also has three sheets.
A second perturbation will resolve the double points: thus the surface

S(1,y) — (6,469) S1(1L,9) +-6€1€58,(1,9) =0

has three sheets and is free of multiple points.
We now consider the differential operator

2 4
L= S(gt aa) (61-+6) gtzs (gt ;x) tar 2§t4S (?%’ %c)’ (6:3)
which is homogeneous of the sixth order with constant coefficients. Clearly its slowness
surface is free of multiple points: if we denote the three velocities of propagation by v, we
have v§ > v§ > v5. By a calculation analogous to that of § 4 we find that the solution of this
equation, with initial values corresponding to the conditions u, = 0; du,/dt = g, for t = 0,
takes the form (4-12), where, however, the vy(x) and L} (x) now depend upon ¢, and e,.
Details of this calculation are omitted.
We now sketch a proof that, for a given set of sufficiently smooth initial data, the solutions
u, depend continuously upon ¢, and ¢,. Suppose for simplicity that ¢; = ¢, = ¢. Then

u,(€) = u,(0) +e¢duy,(be)/de (0 <8 <1)

by Taylor’s theorem. Now ifv,(f¢) = du,(0e)/de, then v, satisfies an inhomogeneous equation

32 J 0 0t (0 0
Loy, =255, (97:’ 9;) u,(06) —20e 5.5, (a 3 ) u,(0c),
which is clearly of the regularly hyperbolic type, i.e. its slowness surface has three non-
intersecting sheets. The solution of such an equation and its derivatives will satisfy energy
integral estimates (Leray 1953) which can in this case be established uniformly with respect
33-2
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to ¢ as ¢ = 0. It follows from Sobolev’s lemma (Leray, p. 159) that v, satisfies a similar
pointwise bound. This shows that u, depends continuously upon ¢ as ¢ = 0, and therefore
that the solution in the case of multiple points is the limit of the solution of L,u, = 0 with
corresponding initial data.

We have therefore to perform the limit ¢ — 0 in (5-39). It is helpful to regard the sharp
wave terms as constituting one integral extended over the complete surface W(¢). The
integrand is to be defined, at ordinary points, by specifying the root which gives the corre-
sponding portion of the slowness surface. Formally, the sharp wave is

: ¢ ’ 7o(6) ¢
?j}) ) L (1) g, (re 6 +%) o(n) (K) JIK ()} dS)y.

We consider double points on S, and note that the limit of W,(¢) is W(t), the convex
completion of W (¢). The formal limit is therefore

L) (rot6-+3) ) o) I, (0} S, (64

We assert, however, that this is the same as the integral over W(z).

To indicate that convergence difficulties are absent, we shall show that over those parts
of W which correspond to singularities of S, the integrand is actually zero. We recall from
§ 2 that to a conical double point of S corresponds a planar portion of W, which has zero
Gaussian curvature. Thisis a particular case of the fact that the reciprocal of a surface having
singularities is defined as the limit of the reciprocals to neighbouring ‘ perturbed’ surfaces
on which the singularities have been reduced. To any singular component of § which is of
dimension 1 or 0 will correspond a portion of W which is a ruled surface or a portion of a
plane, respectively. Thus K,,({) = 0 in both cases, which suggests that it is sufficient to
extend the integration over W(z).

'To complete the proof we shall show that L} () is bounded on §. In describing the
behaviour of L, (7) we shall use the Kelvin form of the fundamental cubic equation for v%(7).

We must examine the circumstances which permit the factors in the denominator of the
expression 2 2
P L},Vq(ﬂ) _ %y 1 (v% aq+1) (v% aq+2) , (65)
vi—a, Uy (0} —vF.1) (0 —vF40)
to vanish—that is, when two roots coincide or when one or more roots equal one of the a,,.

Now the three roots v} are given by the abscissae of the intersections of the quartic curve

052
y=3-—" (66)
x—a,
with the line y = 1. We shall study the quartic curve, which in general has three vertical
asymptotes ¥ = a, (p = 1,2, 3), since if &, + 0, the function y(x) has an infinity as x — a,.
The three quantities a, separate the three roots v% as is evident from figure 6; there are two
cases according as the «} are all positive or all negative, and the figure shows the positive
case.
Case I. One root v*(n) s equal to an a,. This can happen if the corresponding a, is zero. Then
if p = ¢, the leading factors in L}, become
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by the fundamental cubic. The right side is bounded, provided only that the a, are distinct.
For p # ¢ the factor v} —a, in the denominator will cancel with one of the factors v§—a,,;
(¢ =1 or 2), in the numerator.

One root can be equal to an a, if two of the a, coincide: then one branch of the quartic
is the line x = a,. Again there will be cancellation of the factor »—a, in the denominator
with one of the similar factors in the numerator.

Case II. Two roots v* coincide. This can happen if all three a, coincide, in which case two
roots equal their common value. The corresponding Lj], have at most two factors vanishing
in the denominator, and there are two vanishing factors in the numerator. (All of these
factors vanish to the first order when a parameter ¢ and a perturbed surface S, +¢S; = 0 are
introduced.) The third L}, (N = 3) has a non-zero denominator unless all three roots
coincide.

P ARV

Ficure 6. The quartic curve, intersection of which with the line y = 1 gives the roots v} of the
fundamental cubic. The abscissae of the three vertical asymptotes are the a, (p =1, 2, 3).
The case where o > 0 (p =1, 2, 3) is sketched; in the contrary case the curve resembles the
reflexion in the V2 axis of the example shown.

We consider this case of 3 equal roots, when the g, are all equal. After multiplying up and
reducing, we find the fundamental cubic is

(v2—a)? (vV?—a—al—a3—a3) = 0.

Since the a, are cither all real or all pure imaginary, we can have af+aj+af = 0 only if
@y = &y = ag = 0. As the product «,a, = K, (for p + ¢) will vanish to the first order, both
numerator and denominator of L} vanish to the third order, with a finite limiting ratio.
Case I1I. Two a, equal, with one o, vanishing. Suppose a; = a,. If a; or a, vanishes, it can be
seen from the graph of the quartic curve that there will be no double root, and we are back
to case I. Suppose then ay = 0,and thata, + 0,a, # 0. ThiswillhappenonlyifK,; = K,; =0
but K, + 0; and moreover o, vanishes to the first order. One rootisv3 = a,, and the residual
quadratic equation is \
of o
v’—a, v*—a,

=1,

so that if ¢, and a, are equal, the other two roots are v? = a; and v} = a;+a?+0a3. If now
N = p = 1, the factor (v} —a,) in the denominator vanishes, but one of the factors (v} —a,,,)
for ¢ = 1 or 2 will cancel it off. For N = p = 3, the ratio «,/(v]—a,) is finite.

33-3
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Another difficulty appears if ¢, +a? 4o} = a; in the limit: then v, = v;, and for N =2
and 3 there is a vanishing factor in the denominator. However, thereis also a factor vanishing
to the first order in the numerator; for ¢ = 3 this is «, and for ¢ + 3 itis that one of the factors
v%—a,,, which contains a;. Hence L}, is bounded in the limit.

Case IV. One a, vamshes; the a, are unequal. Suppose a3 = 0; then v5 = a, is a root, and the
quotient a4/(v3—a,) remains bounded in the limit as in Case ITI. Neither a4, or a, is a root
of the residual quadratic equation. If one of the roots v or v3 of this equation is equal to as,
there is a vanishing factor in the denominator of L}, for two values of N. However it is
cancelled as in Case III, either by «, (¢ = 3) or by 13 —a,,; (¢ + 3, ¢+i = 3).

Case V. Two o, vanish. Let a) = a, = 0; two roots are v} = a;, v = a, and the third root
is 3 = ay+aj, which for the moment will be assumed distinct from the others. If 1§ —a,
in the denominator is zero, we may proceed as in Case I. Equal roots can arise if ¢, = a,,
in which case another factor in the denominator will vanish. If both v%—a, and v —v%,,
vanish, which is possible for p = 1 or 2, we have to find two factors vanishing to the first
order in the numerator. If ¢ = 1 or 2, the product a,«, provides one of these factors. The
other is one of the factors v} —a,,; (for ¢-+~7 + 3). However, if ¢ = 3 both factors of this
latter type will vanish, as a; = a, is the common value of the double root.

Case VI. Three roots equal. From the graph of the quartic equation it is seen that for all
three roots to coincide, two of the a,, say «; and a, must vanish, while the corresponding
a, are equal to the common root. The third value for v? is a; +-a3 which may be equal to a,
and a,. If oy is not zero then a; + a, = a,, and L}, will have a singularity, as three factors
in the denominator but only two in the numerator will vanish, for instanceifp = ¢ = N = 1.
This case is therefore not covered in our general remarks on the convergence of the
integral (6-4).

To conclude, we see that L} (7) is a bounded factor in the integrand, in the presence of
double points. As the integral (6-4) is the correct sharp wave for a perturbed system, and
as K, ({) - 0 near multiple points of §, it follows that (6-4) gives the solution in these
degenerate cases also, the integration not being extended over the ruled surfaces or planar
domains corresponding to multiple lines or points of S. When such singularities are present
on the innermost sheet of S, there will exist certain directions in which the continuous wave
reaches the field point in advance of the first sharp wave.

7. PARTICULAR EXAMPLES
(a) The isotropic case
As an illustration of the quantities appearing in this solution, and also as a numerical
check, the formulae have been worked out for the isotropic case, for which there are only
two independent elastic constants. If we denote by A and x these two constants divided by
the density, then the slowness surface consists of a sphere of multiplicity one corresponding
to the pressure wave velocity v, = J(A+2p) |x|,

and a sphere of multiplicity two corresponding to the twofold shear wave velocity:

vy = v = JK|X|.
The matrix K, (x) has the form x |x|28,,+ (1+u) x,%,, and, in the notation of § 4, we have
a, = /(A+u) x,, while a, = u|x|2. The A} are not unique, and are best chosen to satisfy
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equations (4+5) directly. This can be done by taking A4} as one or other of the co-ordinates
x,, with a minus sign in some instances. Calculating the L} (x) directly, we find
I, - X, %, : |x|20,,—x,%, .
"7 T o) X[ WISk
The kernels M} (z, t) can be constructed first for z = (z, 0, 0), and then for general positions
of z, using the Cartesian tensor property of the indices p and ¢. For this it is necessary to
evaluate only two easy elementary integrals. The result is

Li,+ qu =

ont (. z,z, "
Miy2,t) =~ (3T =) (< 2,
=0 (02> |z|);
o 2m2t (. z,z
while Mpo(2 ) +- My (2,0) = s (3|_1;Tg—-3pq) (v, < |2|),

=0 (vt = |z|).
The cancellation outside the wave surface is evident.
The explicit solution of the initial value problem is

450) = 47, GG+ K+3) do

tar f o (8ps =8 %0) & (W £-+%) doyg

t d|z|
+— f f 30, —0 Z+X) dwy——,
47 vﬂz<[z|<v<a+zﬂ)z( Q,Cq pq)g"( Fx) Y |z
where the double integral represents the continuous wave, and z = |z|{, |{| = 1. This
formula agrees with Stokes’s solution (1882, p. 268).

(b) The cubic case

In this example we make use of the Kelvin form of the fundamental cubic for »2 to deter-
mine the multiple points or curves on the slowness surface. This enables one to give a closer
estimate of the class number of §'and hence of the maximum number of sharp waves which
will spread out in any direction from a source. The cubic slowness and wave surfaces have
been studied in Miller & Musgrave (1956) and we shall use the same notation for the
elastic constants of the medium.

The Kelvin form of the cubic for »? is

3 2
2 7 _ bzxr_ —— =1
r=10 644IXI & (b a)xr

where a, b, and ¢,, are the three independent constants present. Now unless one or more of
the numerators in the three terms of this equation vanishes, the three quantities

4, = oy X2 (b —a) 2
are separated by two of the roots 2. Thus if two of these quantities are equal, there is a root
v?equal to both, and if all three agree, two equal roots »? are found having the common value.
The third root for »? is larger than all of these three expressions if 4 is positive, and smaller

if  is negative. Thus the only double points not on the co-ordinate planes are on the planes
bisecting the angles between them. There are necessarily eight double points, on the lines
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-+ %, = 4+ x, = +x,. Theseare conical points and it has been noted (Miller & Musgrave 1956)
that they give rise to internal conical refraction.

If b + 0, the numerators of = bx} vanish only on the co-ordinate planes, and the cubic
equation factors there. The two outer sheets of S touch at their points of intersection with
the co-ordinate axes, and so there are six double points of the type known as unodes (Som-
merville 1934, p. 375).

As a conical point subtracts 2 and a unode 6 from the class, we have

class < 150—-8Xx2—6X6 = 98,

so that the number of sharp waves cannot exceed 49. For copper, as plotted by Miller &
Musgrave (1956), there appear to be 9 sharp waves in directions close to the co-ordinate
axes.

For b > 0 the inner sheet S; does not cross over §, and 5 and so is convex. The dual outer
sheet ¥ of the wave surface is also convex, and so the convex envelope coincides with it.
Therefore the continuous wave begins simultaneously with the first sharp wave (figure 3).

For b = 0, the slowness surface degenerates into three congruent oblate spheroids, each
having a different co-ordinate axis as axis of revolution. There are then cight triple points
in place of the above conical points. The wave surface, consisting of three prolate spheroids,
one having each axis as major axis, is not uniformly convex (figure 4). The convex envelope
W is formed by adjoining eight portions of plane surfaces and twelve portions of cylindrical
surfaces to the outer sides of these spheroids. These correspond to the eight triple points and
twelve segments of double curves of intersection of the three oblate spheroids of the slowness
surface. Near the eight directions in physical space which are equally inclined to the crystal
axes, the continuous wave front will precede the sharp waves.

For b < 0 the eight conical points lie on the two innermost sheets of S. Consequently
the two outer algebraic sheets of I form a not uniformly convex surface, and the convex
envelope W must be constructed as in the case b = 0.

(¢) The hexagonal case

An axis of rotational symmetry is present, and as shown by Musgrave (1954 ) this allows
the construction of the wave surface as a surface of revolution based on the curve reciprocal
to a section of the slowness surface. There are five independent elastic constants. The cubic
equation for v? factors and the cross-section of the slowness surface by a plane through the
axis of revolution is a conic C together with a quartic curve consisting of two concentric
non-intersecting closed curves @, and @),.

As the class of the plane curve reciprocal to a curve of degree 7 is < n(n—1), the class of
the slowness surface is not more than 2-+4 x 3, these being the contributions of the two parts.
Consequently the greatest number of sharp waves possible in a medium of hexagonal sym-
metry is seven. An example where five are present is given by Musgrave. The conic, being
an ellipse, is convex, and the inner sheet @, of the quartic is also convex. Thus only the outer
sheet @, of the quartic has points of inflexion giving rise to cusps on W and hence multiple
sharp waves.

The branches C and @, touch as they cross the axis of revolution, and may have four
further points of intersection, the condition for this being given by Musgrave. It can be
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shown that the energy condition (1-3) implies that the combination a— $¢ (in Musgrave’s
notation) is positive, and it follows that C does not meet Q,.

Since @, is isolated, the innermost sheet S; of S, formed by revolving @, is isolated and
convex. Therefore the outer sheet ¥, which is the algebraic dual of §}, is convex. That is,
W(x,t) coincides with its convex envelope W(x, ) and the continuous wave begins simul-
taneously with the first sharp wave.

8. A CRITERION FOR CONVEXITY OF W,

As the slowness surface has degree six, a straight line meeting all three sheets meets each
sheet in just two points. If then there exists an innermost sheet S, isolated from §, and §;,
then § is convex because it is met by no straight line in more than two points. Hence W] is
convex and coincides with the convex envelope.

The Kelvin form (4-15) of the fundamental cubic may be used to show that this situation
prevails in certain cases. The three quantities a?(x), a3(x), a%(x) defined by (4-13) are all
positive or all negative according as K,(x) Ky5(¥) K;;(x) is positive or negative. Supposing
they are positive, we plot the left-hand side of (4-15) as a function of 2 (figure 6) and observe
that the greatest root v3(«) is the only root which exceeds all three quantities a,(x).

The condition K ,(x) K,3(x) K5, (x) > 0 thus ensures that there is no double point on the
inner sheet S, in the x direction. For orthorhombic symmetry with nine independent
constants (Musgrave 1957), this product is

(€112 F€1212) (Canss T Casas) (Cas11+C3131) ¥ A543,
and if the product of constants is supposed positive, only the co-ordinate planes must be
considered separately. On a co-ordinate plane the cubic factors and the three roots are
found by solving a linear and a quadratic equation.
If now the innermost branch of each co-ordinate plane section is isolated, and the above
constant is positive, then the sheet S, is isolated. It follows that.S| and hence /] are convex.

Itis a pleasure to acknowledge the profound help and inspiration of Professor J. L. Synge,
F.R.S., whose suggestions made this work possible.
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